3.21 \(\int (a+a \cos (c+d x))^3 (A+C \cos ^2(c+d x)) \sec (c+d x) \, dx\)

Optimal. Leaf size=147 \[ \frac{5 a^3 (4 A+3 C) \sin (c+d x)}{8 d}+\frac{(4 A+5 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{8 d}+\frac{a^3 A \tanh ^{-1}(\sin (c+d x))}{d}+\frac{1}{8} a^3 x (28 A+15 C)+\frac{C \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 a d}+\frac{C \sin (c+d x) (a \cos (c+d x)+a)^3}{4 d} \]

[Out]

(a^3*(28*A + 15*C)*x)/8 + (a^3*A*ArcTanh[Sin[c + d*x]])/d + (5*a^3*(4*A + 3*C)*Sin[c + d*x])/(8*d) + (C*(a + a
*Cos[c + d*x])^3*Sin[c + d*x])/(4*d) + (C*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(4*a*d) + ((4*A + 5*C)*(a^3
 + a^3*Cos[c + d*x])*Sin[c + d*x])/(8*d)

________________________________________________________________________________________

Rubi [A]  time = 0.438851, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {3046, 2976, 2968, 3023, 2735, 3770} \[ \frac{5 a^3 (4 A+3 C) \sin (c+d x)}{8 d}+\frac{(4 A+5 C) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{8 d}+\frac{a^3 A \tanh ^{-1}(\sin (c+d x))}{d}+\frac{1}{8} a^3 x (28 A+15 C)+\frac{C \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 a d}+\frac{C \sin (c+d x) (a \cos (c+d x)+a)^3}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^3*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(a^3*(28*A + 15*C)*x)/8 + (a^3*A*ArcTanh[Sin[c + d*x]])/d + (5*a^3*(4*A + 3*C)*Sin[c + d*x])/(8*d) + (C*(a + a
*Cos[c + d*x])^3*Sin[c + d*x])/(4*d) + (C*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(4*a*d) + ((4*A + 5*C)*(a^3
 + a^3*Cos[c + d*x])*Sin[c + d*x])/(8*d)

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
+ 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp
[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b
, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-
1)] && NeQ[m + n + 2, 0]

Rule 2976

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])
^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*S
in[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^3 \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx &=\frac{C (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{\int (a+a \cos (c+d x))^3 (4 a A+3 a C \cos (c+d x)) \sec (c+d x) \, dx}{4 a}\\ &=\frac{C (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{4 a d}+\frac{\int (a+a \cos (c+d x))^2 \left (12 a^2 A+3 a^2 (4 A+5 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{12 a}\\ &=\frac{C (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{4 a d}+\frac{(4 A+5 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{8 d}+\frac{\int (a+a \cos (c+d x)) \left (24 a^3 A+15 a^3 (4 A+3 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{24 a}\\ &=\frac{C (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{4 a d}+\frac{(4 A+5 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{8 d}+\frac{\int \left (24 a^4 A+\left (24 a^4 A+15 a^4 (4 A+3 C)\right ) \cos (c+d x)+15 a^4 (4 A+3 C) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx}{24 a}\\ &=\frac{5 a^3 (4 A+3 C) \sin (c+d x)}{8 d}+\frac{C (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{4 a d}+\frac{(4 A+5 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{8 d}+\frac{\int \left (24 a^4 A+3 a^4 (28 A+15 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{24 a}\\ &=\frac{1}{8} a^3 (28 A+15 C) x+\frac{5 a^3 (4 A+3 C) \sin (c+d x)}{8 d}+\frac{C (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{4 a d}+\frac{(4 A+5 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{8 d}+\left (a^3 A\right ) \int \sec (c+d x) \, dx\\ &=\frac{1}{8} a^3 (28 A+15 C) x+\frac{a^3 A \tanh ^{-1}(\sin (c+d x))}{d}+\frac{5 a^3 (4 A+3 C) \sin (c+d x)}{8 d}+\frac{C (a+a \cos (c+d x))^3 \sin (c+d x)}{4 d}+\frac{C \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{4 a d}+\frac{(4 A+5 C) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{8 d}\\ \end{align*}

Mathematica [A]  time = 0.324389, size = 124, normalized size = 0.84 \[ \frac{a^3 \left (8 (12 A+13 C) \sin (c+d x)+8 (A+4 C) \sin (2 (c+d x))-32 A \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+32 A \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+112 A d x+8 C \sin (3 (c+d x))+C \sin (4 (c+d x))+60 C d x\right )}{32 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^3*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(a^3*(112*A*d*x + 60*C*d*x - 32*A*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 32*A*Log[Cos[(c + d*x)/2] + Sin[(
c + d*x)/2]] + 8*(12*A + 13*C)*Sin[c + d*x] + 8*(A + 4*C)*Sin[2*(c + d*x)] + 8*C*Sin[3*(c + d*x)] + C*Sin[4*(c
 + d*x)]))/(32*d)

________________________________________________________________________________________

Maple [A]  time = 0.06, size = 175, normalized size = 1.2 \begin{align*}{\frac{A{a}^{3}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2\,d}}+{\frac{7\,A{a}^{3}x}{2}}+{\frac{7\,A{a}^{3}c}{2\,d}}+{\frac{{a}^{3}C\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{4\,d}}+{\frac{15\,{a}^{3}C\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{8\,d}}+{\frac{15\,{a}^{3}Cx}{8}}+{\frac{15\,{a}^{3}Cc}{8\,d}}+3\,{\frac{A{a}^{3}\sin \left ( dx+c \right ) }{d}}+{\frac{C \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ){a}^{3}}{d}}+3\,{\frac{{a}^{3}C\sin \left ( dx+c \right ) }{d}}+{\frac{A{a}^{3}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)*sec(d*x+c),x)

[Out]

1/2/d*A*a^3*cos(d*x+c)*sin(d*x+c)+7/2*A*a^3*x+7/2/d*A*a^3*c+1/4/d*a^3*C*sin(d*x+c)*cos(d*x+c)^3+15/8/d*a^3*C*c
os(d*x+c)*sin(d*x+c)+15/8*a^3*C*x+15/8/d*a^3*C*c+3*a^3*A*sin(d*x+c)/d+1/d*C*sin(d*x+c)*cos(d*x+c)^2*a^3+3*a^3*
C*sin(d*x+c)/d+1/d*A*a^3*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.03475, size = 220, normalized size = 1.5 \begin{align*} \frac{8 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a^{3} + 96 \,{\left (d x + c\right )} A a^{3} - 32 \,{\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} C a^{3} +{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} C a^{3} + 24 \,{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C a^{3} + 32 \, A a^{3} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 96 \, A a^{3} \sin \left (d x + c\right ) + 32 \, C a^{3} \sin \left (d x + c\right )}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="maxima")

[Out]

1/32*(8*(2*d*x + 2*c + sin(2*d*x + 2*c))*A*a^3 + 96*(d*x + c)*A*a^3 - 32*(sin(d*x + c)^3 - 3*sin(d*x + c))*C*a
^3 + (12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*C*a^3 + 24*(2*d*x + 2*c + sin(2*d*x + 2*c))*C*a^3
 + 32*A*a^3*log(sec(d*x + c) + tan(d*x + c)) + 96*A*a^3*sin(d*x + c) + 32*C*a^3*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.49299, size = 284, normalized size = 1.93 \begin{align*} \frac{{\left (28 \, A + 15 \, C\right )} a^{3} d x + 4 \, A a^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 4 \, A a^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) +{\left (2 \, C a^{3} \cos \left (d x + c\right )^{3} + 8 \, C a^{3} \cos \left (d x + c\right )^{2} +{\left (4 \, A + 15 \, C\right )} a^{3} \cos \left (d x + c\right ) + 24 \,{\left (A + C\right )} a^{3}\right )} \sin \left (d x + c\right )}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="fricas")

[Out]

1/8*((28*A + 15*C)*a^3*d*x + 4*A*a^3*log(sin(d*x + c) + 1) - 4*A*a^3*log(-sin(d*x + c) + 1) + (2*C*a^3*cos(d*x
 + c)^3 + 8*C*a^3*cos(d*x + c)^2 + (4*A + 15*C)*a^3*cos(d*x + c) + 24*(A + C)*a^3)*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**3*(A+C*cos(d*x+c)**2)*sec(d*x+c),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.31912, size = 288, normalized size = 1.96 \begin{align*} \frac{8 \, A a^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 8 \, A a^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) +{\left (28 \, A a^{3} + 15 \, C a^{3}\right )}{\left (d x + c\right )} + \frac{2 \,{\left (20 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 15 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 68 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 55 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 76 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 73 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 28 \, A a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 49 \, C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{4}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^3*(A+C*cos(d*x+c)^2)*sec(d*x+c),x, algorithm="giac")

[Out]

1/8*(8*A*a^3*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 8*A*a^3*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + (28*A*a^3 + 15*
C*a^3)*(d*x + c) + 2*(20*A*a^3*tan(1/2*d*x + 1/2*c)^7 + 15*C*a^3*tan(1/2*d*x + 1/2*c)^7 + 68*A*a^3*tan(1/2*d*x
 + 1/2*c)^5 + 55*C*a^3*tan(1/2*d*x + 1/2*c)^5 + 76*A*a^3*tan(1/2*d*x + 1/2*c)^3 + 73*C*a^3*tan(1/2*d*x + 1/2*c
)^3 + 28*A*a^3*tan(1/2*d*x + 1/2*c) + 49*C*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^4)/d